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Applications of sensitivity analysis to uncertainty quantification in variably
saturated flow

C. Woodwarda�, K. Grantb, R. Maxwellc

aCenter for Applied Scientific Computing, Lawrence Livermore National Laboratory,
P.O. Box 808, L-561, Livermore, CA 94588, USA

bAtmospheric Sciences Division and Center for Applied Scientific Computing, LLNL

cGeosciences and Environmental Technologies Division, LLNL

In this paper, we present results demonstrating the effectiveness of a sensitivity analysis
approach to uncertainty quantification of a variably saturated flow model. The basis for our
method is a software system which simultaneously solves for solutions of large-scale nonlinear
systems of equations and the sensitivity of the solutions to selected parameters. We present
test cases showing the effects on the relative uncertainty of pressure due to heterogeneity in
the absolute permeability and to differences in parameterizing the Van Genuchten curve soil
parameters, � and n.

1. INTRODUCTION

Simulation of water resource management problems often requires the solution of large prob-
lems with many spatial zones. In addition, effective use of simulation solutions requires knowl-
edge of the uncertainty introduced into the solution by variances in problem data. Current
techniques for obtaining this information can require many runs of the simulation code and can
be very time-consuming, especially for large-scale problems.

Sensitivity analysis techniques give a way to compute solution uncertainties by using infor-
mation on the sensitivities of the solution to various parameters. These sensitivities are just the
solution derivative with respect to the parameter in question, and equations for them can be de-
rived by differentiating the original model equation. The resulting sensitivity equation is linear
and can be solved in tandem with the model equations. Solution uncertainties can be developed
from these sensitivities with a straightforward additional calculation.

Our model for variably saturated flow is the mixed form of Richards’ equation [1],
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where s(p) is water saturation, � is water density, � is porosity of the medium, k(x) is absolute
permeability of the medium, kr(p) is relative permeability of water to air, � is water viscosity,
g is gravity and z is elevation.
�This work was performed under the auspices of the U.S. Department of Energy by University of California
Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
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Discretization is done for time with an implicit backward differencing scheme and for space
with a cell-centered finite difference scheme. One-point upstream weighting is used for the face
values of relative permeability and harmonic averaging for the absolute permeability. Applying
these discretization schemes leads to a set of coupled discrete nonlinear equations that must be
solved at each time step.

This paper presents the application of a software system for the computation of solutions to
large, nonlinear systems of equations as well as the computation of the sensitivities of the solu-
tion to various input parameters to a variably saturated flow model. The solution sensitivities are
then used to compute a first order estimate of the solution uncertainties based on uncertainties
in the Van Genuchten parameters.

2. UNCERTAINTY QUANTIFICATION and SENSITIVITIES

In this section we describe how sensitivities can be used to estimate uncertainties in the con-
text of variably saturated flow problems. Relative permeability and saturation as functions of p
can be modeled by Van Genuchten curves [2]. Often, the Van Genuchten curve soil parameters,
� and n, are estimated using curve fits from data, thereby introducing error into the flow model.
In addition, it is unclear as to how these parameters depend on the absolute permeability and
whether this dependence impacts the problem solution. Thus, we model the � and n parameters
as,

� = a1lnjkj+ a2 and n = b1lnjkj + b2 (2)

where k is the absolute permeability of the medium which can exhibit heterogeneity, and the
ai and bi are uncertain parameters. The main questions we want to answer are: What is the
uncertainty in the pressure caused by the uncertainties in the a1; a2; b1, and b2 parameters, and
what is the sensitivity of pressure to changes in these parameters?

We assume that we have a random sample of size N from the (a1; a2; b1; b2) population. A
direct Monte Carlo sampling approach would be to solve (1) N times to find the mean and
standard deviation of the resulting N pressure fields. Instead, we first let

�aj �
1

N

NX
i=1

aj;i and �bj �
1

N

NX
i=1

bj;i (3)

be the corresponding sample means for j = 1; 2. We then solve (1) once using aj = �aj and
bj = �bj , denoting the nominal solution by ~p � p(�a1; �a2;�b1;�b2).

In the sensitivity analysis approach to uncertainty quantification, we use a first order Taylor
series for p(a1; a2; b1; b2) to approximate the dependence of p on the parameters a1; a2; b1 and
b2. That is, we use

p(a1; a2; b1; b2) � ~p+
4X

j=1

 
@~p

@j
� (j � �j)

!
; (4)

where j 2 [a1; a2; b1; b2]. The derivatives @p=@aj and @p=@bj are called the sensitivities of p
with respect to aj and bj . Equations for these derivatives can be obtained by differentiating (1)
with respect to the aj and bj parameters.
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Next, we want to use the above Taylor series approximation to obtain an estimate for the
variance s2

p
of the pressure about ~p at each point in space. We define the vectors
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Again using (4), we have
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Using these relationships, we can write
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The matrix V is an approximation to the covariance matrix C(a1; a2; b1; b2). The derivatives in
the vector c are evaluated using calculated sensitivities.

Of course, the error e = s
2

p
� ŝ

2

p
depends upon how well the linear Taylor series approxi-

mations used above describe the true nonlinear behavior of the uncertainties. One could also
extend this linear approach to a higher order method in the natural way. For example, a quadratic
approach would require three additional solves for the extra sensitivities and would generally
be more accurate, but it would most likely still be much less expensive than a full Monte Carlo
sampling approach.

3. IMPLEMENTATION

We have implemented a three-dimensional variably saturated flow model based on Richards’
equation in the ParFlow software package [3]. The Richards’ equation model uses the KINSOL
inexact Newton-Krylov [4] software package to solve the nonlinear systems at each time step
[5]. Each nonlinear Newton iteration is solved with GMRES [6] preconditioned with Schaffer’s
semi-coarsening multigrid [7] method implemented in the hypre preconditioning library [8].
Previous work has shown that this solution method is very effective for variably saturated flow
problems [9].

After discretization, the nonlinear equation for each finite difference point xi;j;k at each time
step can be written in the form

Fi;j;k(p) = 0; (6)



4

where F is the nonlinear function expressing the discrete form of (1), and p is the vector of
pressures at the new time level at the finite difference points. Thus, at each time step, we have
the coupled nonlinear system

F (p; a1; a2; b1; b2) = 0 (7)

to solve for all the discrete pressure values. Note that the dependence on the uncertain param-
eters has explicitly been included in this system even though these parameters enter the model
through the expressions for relative permeability and saturation.

Next, we define Sj = ~j
@p

@j
for j 2 [a1; a2; b1; b2] as the scaled sensitivity of pressure to the

parameter j. The ~j are nominal values used only for scaling. Differentiating (7) with respect
to each of the parameters gives the equation,

@F

@p
Sj + ~j

@F

@j
= 0: (8)

This differentiation gives a linear equation for each of the 4 sensitivities we seek.
We calculate the solutions to these equations with the sensitivity version of KINSOL [10].

This software package solves the nonlinear system at a time step, then uses the solution to form
(8) for each of the four parameters. First, @F

@j
and the Jacobian of F given by @F

@p
are evaluated.

SensKINSOL evaluates the derivatives of the F with respect to the parameters, j, by taking
finite differences of F as in

@F

@a1
�

F (p; a1 + Æa1 ; a2; b1; b2)� F (p; a1 � Æa1 ; a2; b1; b2)

2Æa1
; (9)

and similarly for the other derivatives of F . One could also use automatic differentiation tech-
niques, and future releases of SensKINSOL will provide basic interfaces to the automatic differ-
entiation software, ADIC [11]. SensKINSOL then solves these systems using the same linear
solver and preconditioner as is used in the solution of the nonlinear iterations.

4. NUMERICAL RESULTS

To explore the sensitivity and uncertainty of pressures, we have constructed a test case with
a large, deep vadose zone and a long-term infiltration study [12]. The alluvial site was mod-
eled both as an anisotropic homogeneous system (case A) and as two isotropic heterogeneous
systems (cases B and C). In case B Van Genuchten parameters are not correlated to satu-
rated hydraulic conductivity, and in case C, � in (2) is correlated to saturated hydraulic con-
ductivity but n is not. These cases are summarized in Table 1. The domain geometry was
150m� 150m� 250m with a trench of 3m� 150m� 250m infiltrating in the upper left of the
domain with a rate of 5m3

=d. A 25�15�50 grid was used with cell spacings of 6m�10m�5m.
For the homogeneous cases, the saturated hydraulic conductivity was set to 3:6m=d in the x and
y directions and 0:517m=d in the z direction. For the two heterogeneous cases, the hydraulic
conductivity was assumed to be isotropic and described by a correlated, Gaussian random field,
generated numerically via the turning bands algorithm [13]. A geometric mean of 7:5m=d with
correlation lengths in the x, y, and z directions of 25m; 12m, and 6m, respectively, and a vari-
ance of the log of hydraulic conductivity of 1:5 was used. For the heterogeneous cases, three
realizations of permeability with different random seeds were simulated for comparison.
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Table 1
This table gives the values of a1; a2, and b2 used in the variations on our basic test case. The %
standard deviation used for parameter c is denoted by �c. Note that b1 and its standard deviation
were taken as 0 for all cases.

Case a1 �a1 a2 �a2 b2 �b2 k Random Seed
A 0:0 0% 9:0 10% 1:5 1% Hom. N/A
B 0:0 0% 9:0 10% 1:5 1% Het. 3
C 0:9927 10% 6:9998 10% 1:5 1% Het. 3

Saturation fields are shown in Figure 1 at 260 days for the three cases. We see the effects
of the trench infiltrating down into the vadose zone. Case C shows much more dependence on
the heterogeneity in the permeability field than the other two. This increased dependence is due
primarily to the dependence of � in (2) on k.
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Figure 1. Saturation fields for the three cases at 260 days show varying impacts of heterogeneity.
Case A (left) shows little impact, while cases B and C show increased impacts.

For cases A and B, sensitivities were computed for a2 and b2, and for case C, sensitivities
were also computed for a1. The sensitivities (unscaled) of pressure to a1, a2, and b2 for case
C are shown in Figure 2. We see that the sensitivity to a1 is greater than to a2 indicating that
the heterogeneity is an important factor in the computed values of pressure. Also, the pressures
are much more sensitive to b2 than the other parameters. Cases A and B show the same relative
sensitivity of the a2 and b2 parameters. This trend indicates that an accurate value of n is much
more critical to this test case than an accurate value of �. We see this to be true in Table 2
where % uncertainties are shown for the three test cases at varying times. The final columns of
this table give an estimate of the percent of the uncertainty contributed by a percent standard
deviation given in Table 1 for each of the three parameters. Clearly b2 with a 1% standard
deviation contributes most to the uncertainty in the domain averaged pressure.

Table 2 also shows the % uncertainty of the domain averaged pressure for cases B and C with
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Figure 2. This figure shows unscaled sensitivities of pressure to changes in the a1, a2, and b2

parameters. The figure indicates that n is a much more important parameter to this test case
than � in the Van Genuchten curves as noted by the different scales of absolute sensitivity for
the three parameters in this case.

different seeds to the geostatistical model. Although we show results for only three realizations
of the permeability field, we see that each of these realizations produces a similar mean and
standard deviation of uncertainty when averaged across the domain, though local minima and
maxima of uncertainty are realization dependent. There is indication of a slight but consistent
decrease over time in the variance due to b2.

Figure 3 shows the total relative uncertainties for the three cases at 260 days. These uncer-
tainties were computed using the standard deviations given in Table 1 and (4). We see that
uncertainties are much lower in the more saturated areas in the water table and near the trench.
In these areas, of course, the relative permeabilities and saturations are less dependent on the
parameters in the Van Genuchten curves. In addition, we see less uncertainties overall in case C
indicating that accounting for the heterogeneity in the Van Genuchten parameters may reduce
overall uncertainty in the final pressure solutions.

5. CONCLUSIONS

Solutions and solution sensitivities for variably saturated flow problems can be solved for
simultaneously. In the case of Van Genuchten curves for relative permeability and saturation,
sensitivity analysis has shown that our test case solutions are much more sensitive to n than
� and that incorporating heterogeneity in the formulation of � does not dramatically change
estimates of uncertainty. In the future, the first order estimates of uncertainty computed here
will be compared with a Monte Carlo simulation approach.
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Table 2
Spatially averaged percent uncertainties of pressure for different heterogeneity cases, random
seeds, and times. The standard deviation of the percent uncertainty is denoted by �. The final
three columns show the approximate percentage contributions to the variance from parameters
a1, a2, and b2.

Case Seed Day % Unc. � %�
2
a1

%�
2
a2

%�
2
b2

A N/A 20 2.1956e+01 2.8896e+00 0.0 20.7 79.3
A N/A 60 2.1904e+01 2.8837e+00 0.0 21.0 79.0
A N/A 260 2.1472e+01 3.4097e+00 0.0 22.0 78.0

B 3 20 2.1946e+01 2.9223e+00 0.0 20.7 79.3
B 3 60 2.1837e+01 3.0185e+00 0.0 21.0 79.0
B 3 260 2.1291e+01 3.6151e+00 0.0 22.3 77.7

B 33 20 2.1962e+01 2.8559e+00 0.0 20.7 79.3
B 33 60 2.1850e+01 2.9706e+00 0.0 21.0 79.0

B 333 20 2.1991e+01 2.7706e+00 0.0 20.7 79.3
B 333 60 2.1857e+01 3.0048e+00 0.0 20.9 79.1

C 3 20 2.1225e+01 2.9623e+00 1.0 13.9 85.0
C 3 60 2.1090e+01 3.1476e+00 1.1 14.1 84.8
C 3 260 2.0567e+01 3.7458e+00 1.1 15.0 83.9

C 33 20 2.1238e+01 2.9062e+00 1.0 14.1 84.9
C 33 60 2.1125e+01 3.0217e+00 1.0 14.3 84.7

C 333 20 2.1256e+01 2.9161e+00 1.0 14.0 84.9
C 333 60 2.1168e+01 2.9783e+00 1.1 14.2 84.7

Carle for the development and assistance with the “Chunk” visualization package, and Andy
Tompson for information on the test problem.
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